

Contents

1 Introduction 1

1.1 Object Design Trade-Offs . 2

1.1.1 Functionality vs Usability . 2

1.1.2 Compatibility vs Extensibility . 2

1.1.3 Space vs Time . 2

1.1.4 Robustness vs Cost . 3

1.2 Interface Documentation Guidelines . 3

1.3 Engineering Standards . 3

1.4 Definitions, Acronyms, and Abbreviations . 4

2 Packages 4

2.1 Client . 5

2.1.1 Controller . 5

2.1.2 View . 7

2.1.3 Data . 10

2.2 Server . 10

2.2.1 Logic Tier . 11

2.2.2 Data Tier . 12

3 Class Interfaces 13

3.1 Client . 13

3.1.1 Controller . 13

3.1.2 View . 18

3.1.3 Data . 24

3.2 Server . 24

3.2.1 Logic Tier . 24

3.2.2 Data Tier . 26

4 Glossary 28

References 29

i

1 Introduction

With social media becoming prominent as a byproduct of the technology era, we
began to see a very intense online photo traffic. To be more specific, over 300 million
photos are uploaded to Facebook daily and there are around 40 billion photos shared on
Instagram since its creation [1]. The direct implication of these numbers is that people
love to take and share photos. They spend hours trying to capture effectual moments
or just to look good. To make it easier for people to be happy with their photos; a new
industry, “Photoshop” had emerged.

Photoshop itself, is a demanding task. People train themselves to become good pho-
toshoppers and spend heaps of time in front of the screen to make realistic photo edits.
The departure point of our project, “Autoshop”, is to make this arduous task accessible
to everyone, even the people knowing the absolute minimum of Photoshop.

The nature of innovation behind Autoshop is to create a new and powerful photo
editing tool using state of the art Computer Science techniques. Autoshop will help
people add objects to and remove objects from their photos without requiring any photo-
shop knowledge. Autoshop makes advanced technologies accessible in multiple platforms,
aiming to dilate its user profile.

Imagine yourself missing a friend gathering, you would probably say “I wish I was
there.”. Autoshop helps you right away at these moments. Using it, you will be able to
effortlessly add yourself into the moment. You may argue that this is possible using tools
such as Adobe’s Photoshop, however, you would have to work quite a bit to do that.
Autoshop, as its name suggests, automizes the process and makes your computer or your
mobile phone your personal photoshopper.

Tons of use cases can be found regarding photo editing. For instance, one may want
to purchase some furniture for her living room, but she may be indecisive about how well
the furniture will fit into the room. With the help of Autoshop; she can take the photo
of the piece of furniture and the living room, combine these as if they are actually in the
same place, and then decide. Also, people can add their faces on top of any photo and
any person’s face, for example, their favorite rock band Queen’s poster or the famous
movie Marvel Avengers’ cover photo.

This report aims to provide an overview of the low-level architecture and design of
our system. First of all, the trade-offs of our design and engineering standards will be
explained. What follows will be the documentation guidelines. After that, information
about the packages and interfaces of Autoshop’s system will be presented. Finally, the
class diagrams and a detailed look into each of Autoshop’s software components will
conclude the report.

1

1.1 Object Design Trade-Offs

In software development, when choosing to enhance a certain feature of a program,
usually another one has to be sacrificed. Almost all decisions with respect to design comes
with certain trade-offs and implications. To create the optimal system for Autoshop we
spent a lot of time identifying trade-offs during the design process. In the following
sections, the trade-offs we have encountered will be presented.

1.1.1 Functionality vs Usability

Two of the most important aspects to consider about design trade-offs are Autohop’s
functionality and usability. Functionality refers to whether Autohop’s functionalities are
working as intended whereas the usability refers to the ease of use and intuitiveness of
these presented functions. Even though our application offers excellent and practical
functionalities, they will offer no value if the user cannot interact with them. For this
reason, Autoshop’s user interface will be as intuitive and easy to use as possible. Thus,
it is possible to say that our design favors usability over functionality.

1.1.2 Compatibility vs Extensibility

First, we thought that our project will be an Android application but now we consider
making Autoshop available both on Android and iOS platforms. Therefore, it is important
that Autoshop is compatible with all these systems. For this reason, we decided to
use Flutter for development. Flutter is an open-source UI software development kit
developed by Google. It helps design and export apps that work in both Android and iOS
while providing the ability to run native code using plug-ins. Thus, Flutter minimizes
the drawbacks of cross-platform development, which are mainly caused by loosing the
privileges of native development.

Extensibility is also important as Autoshop will have to evolve with updates in the
future. There may even be a version of Autoshop that runs in a web browser. Although
the ability to extend the project is crucial, we think creating an application compatible
with multiple platforms is much more desired.

1.1.3 Space vs Time

Autoshop will necessarily use powerful servers to handle GPU heavy tasks such as
computing neural network outputs and performing object segmentation. As the user
wishes to edit high-resolution images the data stored and processed in the server-side gets
larger. This will theoretically increase the response time of the application since the server
will spend more time processing and transferring the data, so there will be an inevitable

2

trade-off between space and time. To avoid this we plan to use lossless compression
techniques that helps us reduce the image size while keeping the modifications visible.
Our primary focus will be response time since it is the key for a good user experience.

1.1.4 Robustness vs Cost

Autoshop aims to provide a service that is reliable in terms of its outputs and is avail-
able with full functionality for the users to access the application whenever they desire.
This leads the application to use better services rather than its minimal requirements,
for example using a cloud maintained by Google is preferable than a small server that
is maintained by the developers. Obviously, using better services is costly in terms of
money. Even if robustness of Autoshop leads to more cost, it is a primary design goal
that we will try to satisfy as much as possible.

1.2 Interface Documentation Guidelines

In this report, all the class names are named in the standard ‘ClassName’ format,
where all of these names are singular. The variable and method names follow a similar
rule as in ‘variableName’ and ‘methodName()’. In the class description hierarchy, the
class names appear first, then the attributes of the class appear, and the hierarchy end
with the methods of the class. In the following table, the detailed outline is presented as:

class Sample

This is a sample class responsible for ...
Attributes

private String name

private int no

public int IP

Methods

public String getName() Returns the name of this object.
public void setIP(int IP) Sets the IP attribute of this object.
public void setAll(String name,

int no, int IP)

Sets the entire set of attributes of this ob-
ject, namely @name, @no, and @int.

1.3 Engineering Standards

For the descriptions of the class interfaces, diagrams, scenarios, use cases, subsystem
compositions and hardware depictions, this report follows the UML guidelines [2]. UML
is a commonly used way to generate these diagrams, easy to use and since it is the

3

method taught at Bilkent University, we chose to utilize it in the following pages. For
the citations, the report follows IEEE’s standards [3].

1.4 Definitions, Acronyms, and Abbreviations

AWS Amazon Web Services. Reliable, scalable, and inexpensive
cloud computing services provided by Amazon. Remote
servers can be rented through this service [4].

GDPR General Data Privacy Regulation. A rule set concerning the
protection of personnel data.

GUI Graphical User Interface. An interface through which a user
interacts with electronic devices such as computers, hand-held
devices and other appliances.

SDK Software Development Kit. An SDK is a collection of soft-
ware used for developing applications for a specific device or
operating system.

UI User Interface. The user interface (UI) is the point of human-
computer interaction and communication in a device.

UML Unified Modelling Language. A standardized modeling lan-
guage consisting of an integrated set of diagrams, developed
to help system and software developers for specifying, visual-
izing, constructing, and documenting the artifacts of software
systems [2].

2 Packages

Autoshop’s Low Level system is composed of two main subsystems, which are client
and server. First three parts are located inside the client-side. These parts are called
View, Controller and Data. Last two parts represent the Server subsystem which are
called Application Logic Tier and Data Tier. In our project, we used a novel approach
to connect the client and the server. Client presents the system information to users.
It also receives the interaction of users and sends them to server to keep the UI (user
interface) running. On the other hand, the server-side is responsible for all non-local data
processing and API usage.

4

2.1 Client

Client has a Presentation tier which consists of 3 subsystems respectively Controller
subsystem, View subsystem and Data subsystem. Controller subsystem will be responsi-
ble for the connection between client and server when data will be sent controller collects
it and when responses are taken for requests, Controller collects it. View subsystem will
be responsible for interface operations. Displaying pages or taken data on the screen will
be done by the view subsystem. Data subsystem handles local storage for the output
photos of users.

2.1.1 Controller

Figure 1: Subsystem Decomposition: Controller

Controller subsystem is responsible for handling the events that are received from the
UI components that are mentioned in the View.

HomeManager:

5

HomeManager is responsible for loading the application on the initial startup. At this
stage, the application will establish a connection with the server.

AddBackgroundPhotoManager:

This class is responsible for retrieving the user gallery and allowing the user to select
one of them.

TutorialManager:

This class is responsible for giving tutorials on how to use the application.

InfoManager:

This class is responsible for allowing the user to change the settings of the application.

SelectOperationManager:

This class is responsible for allowing the user to choose between adding or removing
images.

CameraManager:

This class is responsible for connecting to the camera and letting the user take a
picture.

AddAdditionalImageManager:

This class is responsible for allowing the user to add additional images over the back-
ground image. If the user selects an image from the gallery shown, this class will forward
that image for cropping. If the user chooses to select from assets, this class will change
the page to a different view.

MergeManager

This class is responsible for sending the selected images to the server and receiving
the modified image.

ChooseAssetsManager

This class is responsible for fetching the stored assets of the user.

SelectCropManager

This class is responsible for changing the page to the desired crop operator selected

6

by the user.

ExportManager

This class is responsible for exporting finalized images to social media such as Tele-
gram, Whatsapp, Instagram, Facebook etc.

CropperEngine

This class is the parent class for all crop managers that are described below. It will
implement generic functionality that will be used in each crop class.

SmartCropper

This class will automatically crop the focused object in the image using a neural
network architecture.

ObjectIdentifier

This class is responsible for identifying objects which would be used to extract objects
when smart cropper is used.

ManualCropper

This class is responsible for letting the user crop the image using gestures. It will
receive gesture information from the view and draw rectangles representing the area to
be cropped.

SmoothCropper

Another Cropper that allows for defining a boundary using gestures. The function-
ality of this class corresponds to a user preparing an asset by cropping an image with the
brush.

MagnifierEngine

This class is responsible for scaling images and assets up and down.

RotatorEngine

This class is responsible for rotating images and assets to the desired angle.

2.1.2 View

The view subsystem will be responsible for managing the user interface operations.

7

Figure 2: Subsystem Decomposition: View

View subsystem will consist of following parts:

HomePageManager:

This view is responsible for displaying an initial home page.

AddBackgroundPhotoPageManager:

This view is responsible for displaying the Add background Photo page where user
chooses the background photo.

TutorialPageManager:

This view is responsible for displaying Tutorials.

SettingsPageManager:

This view is responsible for displaying the settings page.

SelectOperationPageManager:

8

This view is responsible for displaying an option to choose either add or remove
operation.

CameraPageManager:

This view is responsible for displaying camera for users to take a photo.

AutoRemovePageManager:

This view is responsible for displaying remove page after selecting remove operation.

AddAdditionalImagePageManager:

This view is responsible for displaying the additional images that the user can add
over the background image.

ChooseAssetsPageManager:

This view is responsible for displaying the user’s assets for selection.

SelectCropPageManager:

This view is responsible for displaying the cropping options to the user.

ManualCropPageManager:

This view is responsible for displaying the image to be cropped and receiving user
gestures. After the gesture is received, a rectangle marking the area to be cropped is
displayed.

SmoothCropPageManager:

This view is responsible for displaying the image to be cropped and receiving user
gestures. After the gesture is received, a polygon marking the area to be cropped is
displayed.

SmartCropPageManager:

This view is responsible for displaying the image to be cropped and receiving user
gestures. After the gesture is received, a rectangle marking the area to be cropped is
displayed, similar to ManualCropPageManager.

ExportPageManager:

9

This view is responsible for displaying export options.

MergePageManager:

This view is responsible for displaying the final images that are ready to be merged.

2.1.3 Data

This subsystem stands for managing local storage in which final edited pictures of the
users will be stored.

Figure 3: Subsystem Decomposition: Data

Image:

This class is responsible for keeping images in storage of the device and utilizing other
classes which take images and do operations on this input image that they take.

2.2 Server

Server has two layers. Logic Tier and Data Tier. Logic Tier is where all user interac-
tion is handled. Logic Tier interacts with the client in a request/response manner. Every
time a user wants to access a service of Autoshop, Logic Tier will handle the request
and generate the appropriate ate response for the user. Data Tier includes a Database
Management Subsystem. Basically, this database is where all the persistent objects are
stored.

10

2.2.1 Logic Tier

This layer is responsible for all major operations of the system. The part of the server
will communicate with many different APIs to service for instance Autoshop’s auto-add
and auto-remove operations. When the client sends a request, then the request will be
parsed and transmitted to the appropriate service.

Figure 4: Subsystem Decomposition: Logic

CommunicationManager

This Manager is responsible for creating and controlling communication between client
and user. It will arrange the http ports and allow the data exchange between client and
server.

AdderNeuralNetworkEngine

A specific Model that contains a neural network trained for context-aware object
addition, in other words automated image styling.

RemoverNeuralNetworkEngine

Another Model that includes a neural network trained for context-aware object re-
moval. The class provides functionality to remove certain pixels from an image and put
realistic artificial pixels in place.

DatabaseManager

This class is responsible for managing user data. It communicates with the Data Tier
to save the processed images. The client will send a request to this class, and the class
will call the necessary functions to give the appropriate response to the client.

11

2.2.2 Data Tier

Data Tier manages interactions with the database. It will communicate with the
Logic Tier to service the requested data.

Figure 5: Subsystem Decomposition: Data

User: A user with her id is stored within the database to query her essential data such
as final processed photo, assets if she permits us.

Assets: A specific type of Image with a well-defined boundary that is not necessarily
rectangular. This class is used to model the additional images.

FinalPhotos: These photos will correspond to the finalized and photoshopped photos
received from the users that give us permissions.

BackgroundPhotos: These photos will correspond to the background and additional
photos received from the users that give us permissions.

AdderNeuralNetwork: The essential data that represents the adder neural network
will be stored here. This data consists of the weights, biases, number of layers, neurons,
activation function details, optimizer parameters and other hyper-parameters that require
tuning.

RemoverNeuralNetwork: The essential data that represents the remover neural net-

12

work, which are described above, will be stored here.

3 Class Interfaces

In this section, signatures, properties and methods of the classes will be provided. In
addition, their specific duties will be indicated in detail.

3.1 Client

In this section the subsystems are dedicated for the client part namely mobile applica-
tion. Names of the functions and classes that are listed may alter along the development
life cycle of the project.

3.1.1 Controller

class HomeManager

HomeManager is responsible for loading the application on at the initial startup. At
this stage, the application will establish a connection with the server.
Attributes

private CommunicationManager communication

private DatabaseManager database

Methods

public Asset[] loadAssets() Loads assets from device storage
public void initApp() Boots up the application

class AddBackgroundPhotoManager

This class is responsible for retrieving the user gallery and allowing the user to select
one of them.
Attributes

private CameraManager cameraManager

Methods

public Image getImageFromGallery() Returns the image from the gallery.

13

class TutorialManager

This class is responsible for giving tutorials on how to use the application.
Methods

public void showInstructionVideo() Shows a tutorial video about Autoshop.
public void showInstructionText() Navigates to the text which explains the

functionalities of Autoshop
public void runDemo() Starts the demo.
public void skipDemo() Provides user to skip the demo.

class InfoManager

This class is responsible for allowing the user to change the settings of the application.
Methods

public void showTeam() Shows the developer team.
public void showFAQ() Shows frequently asked questions.

class SelectOperationManager

This class is responsible for allowing the user to choose between adding or removing
images.
Attributes

private AdderNeuralNetworkEngine adder

private RemoverNeuralNetworkEngine remover

Methods

public AdderNeuralNetworkEngine

getAdder()

Returns adder object to have the picture
added automatically.

public RemoverNeuralNetworkEngine

getRemover()

Returns remover object to have the se-
lected object removed automatically.

class CameraManager

This class is responsible for connecting to the camera and letting the user take a
picture.
Methods

public void directToCamera() Provides access to camera.
public Image getTakenPhoto() Returns the image which is taken by cam-

era.

14

class AddAdditionalImageManager

This class is responsible for allowing the user to add additional images over the back-
ground image. If the user selects an image from the gallery shown, this class will
forward that image for cropping. If the user chooses to select from assets, this class
will change the page to a different view.
Attributes

private AddBackgroundPhotoManager backPhoto

private ChooseAssetsManager chooseAssets

private CameraManager camera

Methods

getters for attributes Returns the objects of corresponding
class.

class MergeManager

This class is responsible for sending the selected images to the server and receiving the
modified image.
Attributes

private Image currentImage

private Image modifiedImage

Methods

public Image getModifiedImage() Returns modified image.
public void sendImage() Send the image to the server.

class ChooseAssetsManager

This class is responsible for fetching the stored assets of the user.
Attributes

private Asset[] assets

Methods

public Asset[] getAssets() Returns the assets.

15

class SelectCropManager

This class is responsible for changing the page to the desired crop operator selected
by the user.
Attributes

private CropperEngine cropperEngine

Methods

public void setCropperEngine() Sets the cropper type with polymorphism
cropper type may be smooth, smart or
manual cropper.

class ExportManager

This class is responsible for exporting finalized images to social media such as Telegram,
Whatsapp, Instagram, Facebook etc.
Attributes

private Image image

Methods

public void exportToInstagram() Exports the image to Instagram.
public void exportToWhatsapp() Exports the image to Whatsapp.
public void exportToTelegram() Exports the image to Telegram.
public void exportToFacebook() Exports the image to Facebook.
public void exportToTwitter() Exports the image to Twitter.
public void exportToGallery() Exports the image to gallery.

class CropperEngine

This class is the parent class for all crop managers that are described below. It will
implement generic functionality that will be used in each crop class.
Attributes

private Image image

Methods

public Image getImage() Gets the image object.
public void drawCropBox() Draws the crop box.
public void crop() Crops the selected area.
public void extractAsset() Extracts the selected area from the image.

16

class SmartCropper

This class will automatically crop the focused object in the image using a neural
network architecture.
Attributes

private ObjectIdentifier identifier

class ObjectIdentifier

This class is responsible for identifying objects which would be used to extract objects
when smart cropper is used.
Attributes

private <NeuralNetType> identifierNN

private <FlutterAreaType> area public int IP

Methods

public Asset getObject() Returns the identified object.
public <FlutterAreaType> getArea() Returns the area (library specific type).

class ManualCropper

This class is responsible for letting the user crop the image using gestures. It will
receive gesture information from the view and draw rectangles representing the area
to be cropped. No methods and attributes, directly inherits from CropperEngine.

class SmoothCropper

Another Cropper that allows for defining a boundary using gestures. The function-
ality of this class corresponds to a user preparing an asset by cropping an image with
the brush.
Methods

public void drawCropBoundary() Provides an aided crop box selection after
drawing.

class MagnifierEngine

This class is responsible for scaling images and assets up and down.
Attributes

private double zoomFactor

Methods

public void resize(Image image) Resizes the image.
public void rescale(Image image) Rescales the image.

17

class RotatorEngine

This class is responsible for rotating images and assets to the desired angle.
Attributes

private double angle

Methods

public void setAngle(Image image) Sets the angle of the rotation.
public void rotate(Image image) Rotates the image

3.1.2 View

class HomePageManager

HomePageManager is responsible for screening the AutoShop logo while the Control
package of the app initiates the server connections.
Methods

public void viewInto() Plays the animation of Beast United with-
out user input.

public void

directToAddBackgroundPage()

Directs app to the next page which is Ad-
dBackground Page.

class AddBackgroundPhotoManager

AddBackgroundPhotoManager is responsible for show the the images from gallery and
a user friendly UI to choose them or direct user to Camera page. AutoRemove’d.
Methods

public void viewImages() Renders image on the page with in a grid-
style design.

public void pressedInfoButton() Directs App to Info page.
public void

pressedSettingsButton()

Directs App to Settings page.

public void pressedCameraButton() Directs App to Camera page
public void pressedSelectButton() Makes photos able to be selected.

18

class SelectOperationPageManager

SelectOperationPageManager is responsible for providing the user friendly UI to let
user tdecide on which operation to do.
Attributes

private FlutterImage image

private double tuple set freeBorder

Methods

public void pressedAutoAdd() Directs App to AutoAdd Page.
public void pressedAutoRemove() Directs App to AutoRemove Page
public void rescaleImage() With the data gathered by user it rescales

the image.

class CameraPageManager

CameraPageManager is responsible for providing the user friendly UI take a photo.
Methods

public void pressedFlashButton() Turns on/off the flash light.
public void switchCamera() Switches the camera between rear and

front.
public void takePhoto() Takes a photo.
public void returnPrevPage() Directs App to previous page

class AddAdditionalImage

AddAdditionalImage is responsible for providing the user friendly UI to add Additional
Image for AutoAdd functionality of AutoShop.
Methods

public void viewImages() Shows images to user from Gallery.
public void selectButtonPressed() Enables photos to be selected.
public void

chooseFromAssetsButtonPressed()

Directs App to ChooseFromAssets Page.

public void returnPrevPage() Directs App to previous page

19

class SelectCropPageManager

SelectCropPageManager is responsible for providing the user friendly UI to let user
choose the crop type she will perform.
Attributes

private FlutterImage image

private double tuple set freeBorder

Methods

public void rescaleImage() Rescales images with the gesture data
from user gestures.

public void pressedManualButton() Directs App Manual Crop Page.
public void pressedSmoothButton() Directs App to Smooth Crop Page.
public void pressedSmartButton() Directs App to Smart Crop Page.

class ChooseAssetsPageManager

ChooseAssetsPageManager is responsible for providing the user friendly UI represents
the pre-available assets and let user choose among them.
Attributes

private FlutterImage image

private double tuple set freeBorder

Methods

public void viewAssets() Renders Asssets in a grid-style design.
public void selectButtonPressed() Asset is chosen by user.

class SmartCropManager

SmartCropManager is responsible for providing the user friendly UI to user set the
rectangular border for smart cropper.
Attributes

private FlutterImage image

private double tuple set rectangularBorder

Methods

public void getGesture() Get gestures from user to adjust the rect-
angular border.

public void rerenderBorderImage() Rerenders the image after border is
changed.

public void pressedUndoButton() Undos users last move.
public void pressedDoneButton() Directs App to apply the smart crop.

20

class SmoothCropManager

SmoothCropManager is responsible for providing the user friendly UI to set the border
for Smooth Crop.
Attributes

private FlutterImage mage

private double tuple freeBorder

Methods

public void getGestureData() Get gesture input from the user.
public void rerenderBorderImage() According to latest user gestures rerenders

the border.
public void pressedUndoButton() Undos the latest change by the user on

the border.
public void pressedDoneButton() Finishes this stage of app and directs user

to next page.

class ManualCropManager

ManualCropManager is responsible for providing the user friendly UI to manually crop
the additional image.
Attributes

private FlutterImage image

private double tuple set rectangularBorder

Methods

public void getGestureData() Gets user gesture data on touch screen.
public void rerenderBorderImage() Rerenders border image after new change.
public void pressedUndoButton() Undos users last change.
public void pressedDoneButton() Finishes manual crop stage and directs to

next stage.

21

class SettingsPageManager

SettingsPageManager is responsible for providing the user friendly UI to show user
settings options.
Attributes

private FlutterImage mage

private double brushSize

private FlutterArea brushedArea

Methods

public void directToContact() Directs App to Contact page.
public void directToRateApp() Directs App to Rate App functionality.
public void directToShareApp() Directs App to Share App functionality.
public void directToTeam() Directs App to show team members.
public void directToFAQ() Directs App to FAQ page.
public void returnToPrevPage() Directs App to previous page.

class TutorialPageManager

TutorialPageManager is responsible for providing the user friendly UI to show user
basic tutorial about how to use the app.
Methods

public void skipTutorial() Skips the tutorial.

class AutoRemovePageManager

AutoRemovePageManager is responsible for providing the user friendly UI to user to
brush the region that is wanted to be AutoRemove’d.
Attributes

private FlutterImage mage

private double brushSize

private FlutterArea brushedArea

Methods

public void getBrushGesture() Gets user data from touchscreen and ad-
justs brushed area.

public void rerenderBrushedPart() Rerenders brushed area after it is
changed.

public void pressedAutoRemove() After pressing AutoRemove app is di-
rected to apply AutoRemove

public void returnPrevPage() Directs App to previous page

22

class MergePageManager

MergePageManager is responsible for providing the user friendly UI to re-position and
re-scale the Additional Image before AutoAdd functionality runs.
Attributes

private Image : image

private double tuple : addImagePos

private double : addImageScale

Methods

public void pressedAutoAdd() Finishes this stage and directs app to ap-
ply AutoAdd functionality.

public void repositionAddImage() Repositions additional image regarding
the gestures of the user on the touch
screen.

public void rescaleAddImage() Rescales additional image according to
the hand gestures of the user.

public void rerenderAddImage() Rerenders additional image.
public void returnPrevPage() Directs App to previous page

class ExportPageManager

ExportPageManager is responsible for providing the user with user-friendly UI that
she can command to export the AutoShop’d image to various Social Media platforms
or save it to the local image gallery.
Attributes

private Image image

Methods

public void directToInstagram() Directs App to run functions to share im-
age on Instagram

public void directToWhatsApp() Directs App to run functions to share im-
age on Instagram

public void directToTwitter() Directs App to run functions to share im-
age on Instagram

public void directToFacebook() Directs App to run functions to share im-
age on Instagram

public void saveToGallery() Directs App to run functions to save im-
age to gallery

public void returnPrevPage() Directs App to previous page

23

3.1.3 Data

class Image

This class is responsible for keeping images in storage of the device and utilizing other
classes which take images and do operations on this input image that they take.
Attributes

private int width

private int height

private <FlutterImgType> matrix

Methods

public <FlutterImgType>

getMatrix()

Gets the matrix of the image which stores
pixel by pixel.

public void importFromGallery() Imports the image from the gallery.
public void importFromCamera() Imports the image from the camera.

3.2 Server

In this section the subsystems are dedicated for the server part. Names of the functions
and classes that are listed may alter along the development life cycle of the project.

3.2.1 Logic Tier

class CommunicationManager

This Manager is responsible for creating and controlling communication between client
and user. It will arrange the http ports and allow the data exchange between client
and server.
Methods

public Image getImage() Returns the image from the server.
public void sendImage(Image image) Sends image to the server.

class DatabaseManager

This class is responsible for managing user data. It communicates with the Data Tier
to save the processed images. The client will send a request to this class, and the class
will call the necessary functions to give the appropriate response to the client.
Methods

public void connectToDatabase() Connects database when the application
starts.

public void setDatabase() Sets the database from the server.

24

class AdderNeuralNetworkEngine

A specific Model that contains a neural network trained for context-aware object
addition, in other words automated image styling.
Attributes

private <AdderNNType> adderNN

private Asset[] assets

Methods

public Image add() Modify the image with add operation then
returns the modified image.

public void setAssets(Asset[]

assets)

Sets the assets.

public Asset[] getAssets() Gets the assets.

class RemoverNeuralNetworkEngine

Another Model that includes a neural network trained for context-aware object re-
moval. The class provides functionality to remove certain pixels from an image and
put realistic artificial pixels in place.
Attributes

private <RemoverNNType> removerNN

private Boundary boundary

Methods

public Image remove() Modify the image with remove operation
then returns the modified image.

public Boundary getBoundary() Returns boundary of this specific type of
Image.

25

3.2.2 Data Tier

class User

A user with her id is stored within the database to query her essential data such as
final processed photo, assets if she permits us.
Attributes

private DatabaseManager database

private CommunicationManager communication

private int userID

Methods

public int getUserID() Returns the id of the user.
public DatabaseManager

getDBManager()

Returns DatabaseManager object to get
user’s data in the server.

public CommunicationManager

getManager()

Returns the CommunicationManager ob-
ject.

class Asset

A specific type of Image with a well-defined boundary that is not necessarily rect-
angular. This class is used to model the additional images and to store the cropped
images like stickers in Instagram or Telegram.
Attributes

private Boundary boundary

Methods

public Boundary getBoundary() Returns boundary of this specific type of
Image.

class FinalPhotos

These photos will correspond to the finalized and photoshopped photos received from
the users that give us permissions.
Attributes

private CommunicationManager communication

private Image[] modifiedImages

Methods

public Image[] getModifiedImages() Returns the final modified images of the
users.

public CommunicationManager

getManager()

Returns the CommunicationManager ob-
ject.

26

class BackgroundPhotos

These photos will correspond to the background and additional photos received from
the users that give us permissions.
Attributes

private CommunicationManager communication

private Image[] images

Methods

public Image[] getImages() Returns the background images of the
users.

public CommunicationManager

getManager()

Returns the CommunicationManager ob-
ject.

class AdderNeuralNetwork

The essential data that represents the adder neural network will be stored here. This
data consists of the weights, biases, number of layers, neurons, activation function
details, optimizer parameters and other hyper-parameters that require tuning.
Attributes

Types differ according to different libraries, most of them implemented in Python
therefore no specific types.
weights

biases

neurons

optimizerParameters

numberOfLayers

class RemoverNeuralNetwork

The essential data that represents the remover neural network, as described in
AdderNeuralNetwork, will be stored here.
Attributes

Types differ according to different libraries, most of them implemented in Python
therefore no specific types.
weights

biases

neurons

optimizerParameters

numberOfLayers

27

4 Glossary

Activity In android an activity is a entry point for a user’s interaction
with the application.

Component Self-contained entities that provide services to other compo-
nents or actors. A Web server, for example, is a component
that provides services to Web browsers. A Web browser such
as Safari is a component that provides services to a user [5].

FastPhotoStyle An NVIDIA library that is available in Python. Given a con-
tent photo and a style photo, the library can adjust the con-
tent photo according to the style of the style photo [6].

ImageInpainting An NVIDIA library available in Python. The library can re-
move parts of the image and replace the removed parts with
realistic artificial parts [7].

Jupyter Project Jupyter exists to develop open-source software, open-
standards, and services for interactive computing across
dozens of programming languages.

Neural Networks A set of algorithms, modeled loosely after the human brain,
that is designed to recognize patterns [8].

Node Physical device or an execution environment in which compo-
nents are executed [5].

28

References

[1] D. W. Stout, Claire, J. Lyles, James, A. Sarkar, Barbora, Kyle, Betty, A. Brown,
Robison, and et al., “Social media statistics: Top social networks by popularity,” Jul
2019.

[2] “Unified modelling language.” https://www.visual-paradigm.com/guide/

uml-unified-modeling-language/what-is-uml/. [Accessed: 11- Feb- 2020].

[3] “Ieee reference guide.” https://ieeeauthorcenter.ieee.org/wp-content/

uploads/IEEE-Reference-Guide.pdf. [Accessed: 11- Feb- 2020].

[4] “Amazon web services.” https://aws.amazon.com/. [Accessed: 8- Nov- 2019].

[5] B. Bruegge and A. H. Dutoit, “Object-oriented software engineering using uml, pat-
terns, and java,” 2009.

[6] Nvidia, “Nvidia/fastphotostyle.” https://github.com/NVIDIA/FastPhotoStyle,
Feb 2019. [Accessed: 3- Nov- 2019].

[7] “Remove unwanted objects.” https://online.theinpaint.com/. [Accessed: 3- Nov-
2019].

[8] “Neural networks.” https://skymind.ai/wiki/neural-network. [Accessed: 8- Nov-
2019].

29

